Phenology and Insecticide Choices to Manage the SCA in 2016 in the Rio Grande Valley

Raul T. Villanueva

raul.villanueva@uky.edu

Sugarcane Aphid Informative Meeting - Weslaco, April 12, 2016

Phenology: study of life cycle events influenced by annual changes in seasons, climate, and habitat (i.e. latitude, altitude)

Planting time

Environment

Management

Cultivar

Fall 2014

http://sorghumcheckoff.com/pest-management/

Company/Brand	Hybrid*	Maturity	
Pioneer	83P17	Med-Full	
Pioneer	83P56	Med-Full	
DEKALB	37-07	Med-Early	
DEKALB	Pulsar	Med-Early	
Sorghum Partners	SP 7715	Med-Full	
Sorghum Partners	SP 78M30	Med-Full	
Sorghum Partners	SP 73B12	Med-Full	
Richardson	RS260E	Med-Full	
Richardson	Sprint W FG	Med-Early	
Richardson	Jowar I	Full	
Richardson	Swift	V. Early	
Alta	AG1201	Early	
Alta	AG1301	Med-Early	
Alta	AG1203	Med-Early	
Mycogen	627	Med-Early	
Mycogen	1G688	Medium	
B-H Genetics	BH 4100	Medium	
B-H Genetics	BH 3400	V Early	
Warner Seed	W-844-E	Med-Full	
Warner Seed	W-7051	Med-Full	
Golden Acres	3960B	Med	

Sugarcane aphid (Melanaphis sacchari)

Historic records on the presence of SCA in the U.S.

SCA in TX sorghum 2013

Distribution in the U.S and Mexico 2015

	2013	2014	2015
U.S.A.	6	12	16
Mexico	2	11	19

Sexual forms: Sugarcane Aphid

Sexual forms found on Mexico on areas near the sea level or higher elevation (1500 m)

Partial Component Analysis of SCA hosts by geographic Interaction in MS, LA, OK, AR and TX

Dr. Raul Medina,
Texas A&M University

Identification of SCA:

Melanaphis sacchari

Based on Taxonomic and molecular analysis of US populations

Geographic Structuring of Johnson grass-Associated M. sacchari

GS: grain sorghum, JG: Johnson grass, SC: sugarcane,

Sugarcane aphid (Melanaphis sacchari)

SCA PHENOLOGY: 2014 vs. 2015

Mean numbers of SCA/leaf in the Rio Grande Valley on 13 and 15 commercial sorghum fields in 2014 and 2015, respectively

Almost 99% of commercial sorghum growers used Transform® 1, 2 or 3 times during the spring season

Environmental Conditions

Amount of rain during the hour

Threshold has been changed based on further studies leaded by Dr. Brewer (Corpus Christi, TX) and Dr. Kerns (Winnsboro, LA)

➤ 2014: 50 to 125 aphids/leaf up to boot stage of development

Week 1 Untreated Poncho

Alex Navarro

Seed treatment

Greenhouse study

Seed treatments protect sorghum for at least 4 to 6 wks after emergence

Insecticides recommended for the management of the SCA in sorghum - 2016

- Transform® (*sulfoxaflor*)
- Sivanto[®] (*flupyradifurone*)

High volume of water is important for good coverage

- •Ground ≥10 GPA

 15-20 GPA is better
- •Air ≥ 5 GPA

 10 GPA is suggested

Insecticide / Mode of action	Use	Reapplication interval	Rate	PHI
Transform® WG MoA: 4C	Max 2 sprays or 3 oz/A	14 days	0.75 - 1.5 oz/A	14 d
Sivanto [®] 200 SL MoA: 4D	Max/season 28 oz/A	7 days	4.0 - 10.0 oz/A	7 d forage21 d grain

Is Transform® working?

Transform®

- Spray 9/25
- Pics 9/29

Sorghum Planted on: 31 May 15 August

Control options for SCA, and other sorghum pests - 2016

SCA sampling

 40 plants per field when plants are small

 20 plants per field in large plants (older than 5 leafstage)

Check entire plant, lower side of leaf

2 leaves per plant 1 leave below flag leaf and the green lowest leaf in plant

Insecticide options for 2015

Insecticide options for 2015

Evaluating insecticides fall 2015

Rio Grande Valley

Fall 2015 Test

Untreated seeds

Planted on: 08/31/15 Sprayed on: 09/30/15

Day 0 = Sept 30

Day 5 = Oct 5

Day 8 = Oct 8

Day 13= Oct 13

Day 19 = Oct 19

SCA crash on control was due to complete deterioration of plants due to sugarcane aphid damage.

Natural enemies

Numerical response of natural enemies to still cannot keep up with large population explosions of SCA

Evaluation of entomopathogenic fungi for SCA control

Karla Cruz

In bioassays, *B.*bassiana, *M.*brunneum and *I.*fumosorosea
caused >80%
mortality

Ten *M. sacchari*, and tallies at 24, 48, 72 h.

Harvest and desiccants

- Honeydew and sooty mold may affect Glyphosate
- Sodium chlorate can be a better option when SCA have deposited honeydew or presence of sooty mold
- If SCA are abundant and move into heads
 Transform® (14-d PHI) may be included with the desiccant spray

Summary

- There are tools to manage the SCA: Seed treatments, resitant/tolerant cultivars, early planting
- **Transform**® (sulfoxaflor) worked effectively to control SCA, it was recently approved for its use in 2016.
- **Sivanto** ® (flupyradifurone) is very effective against the SCA,
- Threshold approx. 30 to 120 SCA/leaf (*Brewer &Kerns*)
- Natural enemies were abundant but no sufficient
- Yield losses can be great: from 50 to 100%

Thank you!

Acknowledgments

Grower cooperators

Daniel Sekula

Gabriela Esparza-Diaz

Raul Medina

Robert Bowling

David Kerns

Raul Medina

Karla Cruz-Aldaco

Miguel Arias

Jorge Arellano

Alex Navarro

Brad Cowan

Enrique Perez

Web Wallace

Beto Garza

Sergio Davila

Lauren Fann

Joe Martinez

Alma Olguin

Elizabeth Arzola

George Loya

Kendall Duke

John Norman

Samuel Zapata

L. Rodriguez de Bosque

Sergio Sanchez

Victor Maya

United States Department of Agriculture National Institute of Food and Agriculture

Colleagues

- Bill Rooney -Texas A&M Univ., College Station
- Mike Brewer AgriLife Research, Corpus Christi
- Scott Armstrong USDA-ARS, Stillwater, OK
- Mo Way AgriLife Research, Beaumont
- David Kerns Louisiana State University
- JP Michaud Kansas State University

Raul T. Villanueva 1205 Hopkinsville Street Phone: (270) 365-7541

raul.villanueva@uky.edu

Helicoverpa armigera (Old World Bollworm)

- Annual losses in Brazil: \$2 billion,
 yields were reduced by 35%
- OWB developed rapid resistance to insecticides and Bt-cultivars
- USDA-APHIS confirmed the first U.S. detection on June 17, 2015 in Florida

